# Operations Analysis Group Software for EPICS Environments

M. Borland Operations Analysis Group, AOD March 18, 2004

Reporting on work of M. Borland, L. Emery, N. Sereno, H. Shang, R. Soliday

#### Outline

- Brief introduction to OAG
- Basic technologies: Tcl/Tk
  - Why and how we use it
  - PEM automation environment
- Basic technologies: SDDS
  - Why and how we use it
- Data analysis capabilities
- Data logging capabilities
- Process control capabilities

#### Brief Introduction to OAG

- Group of accelerator physicists and programmers formed in 1995 to "apply the lessons of commissioning to accelerator operation."
- We automate the operation of APS accelerators.
- We manage the data logging systems.
- We also write accelerator simulation codes.
- We consistently use Tcl/Tk and SDDS.

#### Tcl/Tk

- Tcl/Tk is our standard scripting language
  - Free
  - Open source
  - Easy to learn
  - Extensible
  - Great for GUIs

#### OAG Tcl/Tk

- Tag/value convention for all procedues is critical
  - Instead of functionName arg1 arg2 arg3 ...
  - We use functionName -tag1 value1 -tag2 value2 ...
  - Makes upgrades and reuse easy and robust
  - Code is far more readable
- OAG widget library for common look-and-feel
- Extensions for (among others)
  - Channel access (et\_wish)
  - SDDS file access
- "Machine procedures" library for accelerator operations

#### OAG PEM Environment

- PEM\* (Procedure Execution Manager) is an Tcl/Tk environment used for automation
  - Machine procedure lists
  - Hierarchical, parallel execution
- Critical concept:
  - When a human initiates a procedure, the human must provide "arguments" through a GUI
  - When software initiates a procedure, it must provide the arguments and the GUI is suppressed

<sup>\*</sup>Written by OAG emeritus C. Saunders

#### Simplified Particle Accumulator Ring PEM Diagram



# PAR PEM Panel



#### **SDDS**

- SDDS = Self-Describing Data Sets
  - A stable, general-purpose file protocol
  - Generic tools that operate on SDDS files
  - EPICS tools that are configured by SDDS files
  - Libraries for working with such files
- Multiplatform and open-source
  - Solaris, Linux, Windows, OS-X, VxWorks
- Supported languages
  - Shell commandline
  - C/C++, Tcl/Tk, Python, Java, IDL, MATLAB, FORTRAN

#### Why Use Self-Describing Data?

- Programs that use it are much more robust and flexible
  - Check existence, data-type, units of data instead of crashing or doing something inappropriate
  - Respond appropriately to the data that is provided
    - Exit and warn user, or
    - Use defaults for missing data
  - Data doesn't become obsolete when the program is upgraded
- Data sets can evolve without breaking applications
- Multiple uses for one data set are possible
  - Helps maintain consistent configuration of multiple applications

#### SDDS File Protocol

- Data model
  - File has a sequence of instances of a structure
  - Structure contains
    - Parameters (scalar values)
    - Table
    - Arbitrarily-dimensioned arrays (little-used)
- All elements are named.
- Meta-data includes units, description, data type
- Options for binary, ASCII, and compressed storage

#### **SDDS** Toolkits

- Without the Toolkits, SDDS would be just another boring file format
- Toolkit is UNIX-inspired

#### • UNIX

- Everything is a file
- Programs are "filters" operating on ASCII streams
- Pipes allow sequencing filters arbitrarily

#### • SDDS

- Everything is a selfdescribing file
- Programs are operators that transform datasets
- Pipes allow sequencing operators arbitrarily

#### SDDS and Tcl/Tk

- SDDS and Tcl/Tk complement each other
- Tcl/Tk is a good language for GUIs, but
  - Lacks data management capabilities
  - Not great for computation
- SDDS offers data management, analysis, and computation, but
  - Is not a programming language
  - Has commandline user interface

#### Examples: Orbit Correction

- SDDS-linked Tcl/Tk GUIs for
  - Component status tracking (e.g., "bad BPMs")
  - Correction configuration management
  - Starting and monitoring processes
- SDDS-configured processes include
  - In-IOC or workstation-based feedback algorithm
  - Permission-to-run testers
  - Feedforward for x-ray BPM correction and fault tolerance
- All data storage and preparation uses SDDS, including
  - Simulation data (response matrix)
  - Measurements (feedforward data)
  - Configurations and configuration history

Orbit Correction Configuration GUI



BPM Status Management GUI



#### Examples: Save/Compare/Restore System

- SDDS request and snapshot files have PV meta-data
  - System, subsystem
  - Data type (numerical, enumerated)
  - Access mode (read-only, protected, manual-only)
  - Tolerance
- Tag configurations as "preferred" or "reference"
- Compare configurations, or saved state to present state
- Review all or part of a configuration
- Restore/ramp to all or part of a configuration
- 60k process variables are tracked for APS machines

### Examples: Setpoint Tracking

- S/C/R only manages discrete configurations stored on demand
- We also monitor changes to "all" setpoints (with deadbands)
- The PVHistory application allows
  - Plot or print history of setpoints
  - Rolling back to any point in the past



### SDDS Toolkit Capabilities

- Display: graphical and text output
- Math: integrate, differentiate, interpolate, normalize, smooth, peakfind, zerofind, evaluate equations, remove baseline
- Matrix: pseudoinverse, transpose, arithmetic operations
- Statistics: correlate, histogram, outlier removal, envelopes, column statistics, running statistics
- DSP: (de)convolution, filtering, FFT, NAFF
- Fitting: exponential, polynomial, gaussian, user-defined
- Manipulation: filter, match, sort, merge, collapse/expand tables, cross-reference/select
- Similar to MATLAB or IDL, but free and open-source









- Scalar data collection
  - Time-series (sddslogger)
  - Time-series statistics (sddsstatmon)
  - Glitch- or alarm-triggered with pre- and post-trigger data (sddsglitchlogger)
  - Log-on-change (sddslogonchange)
  - Conditional logging supported
- These tools are used for most OAG data logging

- Synchronized collection (sddssynchlog)
  - Does timestamp alignment of high-rate data
  - Optionally collects related, unsynchronized data
  - Supports scalars and waveforms
- Used for on-demand investigation of correlations

- Alarm data collection (sddsalarmlog)
  - Space-efficient binary files with coded PV names
  - Optional "related PV" logging (e.g., status bits)
- GUI applications for alarm analysis and review, including
  - Alarm rate vs time
  - Alarm counts per PV
  - Alarm overlap
  - Decoding status bits



- Waveforms collection:
  - At intervals, or when changed (sddswmonitor)
  - Simultaneous collection of related scalars
  - Get/put to/from SDDS files (sddswget/sddswput)
- Used for
  - Beam profile and image capture
  - BPM fast history capture
  - Feedback history capture
  - IOC orbit correction configuration

- N-dimensional experiment execution (sddsexperiment)
  - Data and statistics collection
  - Validity testing
  - Subprocess execution
- Used for accelerator and hardware characterization
  - Feedback matrix measurement
  - X-ray BPM feedforward data collection
  - BPM offset measurement
- For direct-user interaction, we prefer the new ExperimentDesigner script

## Experiment Designer

|                                                                                                                                                                                                                                                                                                             | ExperimentDesigner                     | -   <del> </del> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|
| <u>F</u> ile                                                                                                                                                                                                                                                                                                |                                        | <u>H</u> elp     |
| 13:57:36 Configuration loaded from file /home/oxygen/BORLAND/sddsEpicsTests/ED06/monitorLines 13:57:36 Completely loaded from /home/oxygen/BORLAND/sddsEpicsTests/ED06/execution 13:57:36 Completely loaded from /home/oxygen/BORLAND/sddsEpicsTests/ED06/ChangeControl.  Print Save As Email Expand Dialog |                                        |                  |
| ProcessVariables \ Initialization \ ExecutionDesign \ OutputFiles \ Postprocess \  Steps 5 Interval (s) 1 Run Postprocess after experiment? ◆ Yes ❖ No                                                                                                                                                      |                                        |                  |
| Output rootname: tes                                                                                                                                                                                                                                                                                        | me/helios/BORLAND/sddsEpicsTests<br>t7 |                  |
| Experiment Description:                                                                                                                                                                                                                                                                                     |                                        |                  |
| Press "Add Exec Entry" button to add the execution steps in order                                                                                                                                                                                                                                           |                                        |                  |
| Type: ChangeControl                                                                                                                                                                                                                                                                                         | SET/VIEW Arguments INSERT DELETE       |                  |
| Type: WaitTime                                                                                                                                                                                                                                                                                              | SET/VIEW Arguments INSERT DELETE       |                  |
| Type: ReadValue                                                                                                                                                                                                                                                                                             | SET/VIEW Arguments INSERT DELETE       |                  |
| Type: RunProgram                                                                                                                                                                                                                                                                                            | SET/VIEW Arguments INSERT DELETE       |                  |
| Type: WaitForUser                                                                                                                                                                                                                                                                                           | SET/VIEW Arguments INSERT DELETE       |                  |
| Type: RunStatistics                                                                                                                                                                                                                                                                                         | SET/VIEW Arguments INSERT DELETE       |                  |
| Type: RunProgram                                                                                                                                                                                                                                                                                            | SET/VIEW Arguments INSERT DELETE       |                  |
| Add Exec Entry   clear                                                                                                                                                                                                                                                                                      |                                        |                  |
| INITIALIZE RUN INITIALIZE+RUN PAUSE RESUME TERMINATE CLEAR ALL NAME CAPTURE                                                                                                                                                                                                                                 |                                        |                  |

- Feedback (sddscontrollaw)
  - Proportional or integral mode
  - Validity testing, change limits, deadbands, logging
  - PV controls include locking semaphores
  - Will run under VxWorks
- Applications include
  - Storage ring orbit control
  - Beamline steering
  - Linac energy and trajectory control



- Feedforward (sddsfeedforward)
  - Multiple inputs and outputs
  - Locking semaphores
  - Will run under VxWorks
- Applications
  - X-ray BPM gap-dependence compensation
  - Rf BPM intensity-dependence compensation
  - EMW switching correction
  - Septum magnet temperature drift compensation

- Generic optimization (sddsoptimize)
  - Simplex or successive 1D scan methods
  - Validity testing
  - Script option for setting conditions
  - Script option for computing penalty function
- Applications include
  - Kicker bump matching
  - Coupling optimization
  - Injector efficiency optimization
  - Optimization of simulation results

#### Generic EPICS Optimization Interface



- Save/restore
  - Venerable burtrb/burtwb pair are (mostly) SDDS-compliant
  - New sddscasr program is completely compliant
    - Faster than burtrb/burtwb
    - Server mode with PV controls is faster yet
    - Waveform save/restore
  - Program sddscaramp ramps through a sequence of snapshots

Save/
Compare/
Restore
GUI



- PV creation
  - PVs can be created on-the-fly with sddspcas
  - SDDS-configured by a file that can also double as
    - Data logger input file
    - Save/restore input file
  - Creates scalar and waveform PVs
  - Checks for existence of PVs before continuing
  - Handy for development work

### OAG Data Logging System

- For time-series logging, master (SDDS) configuration file is read by a script on each workstation
  - Identifies the logger, its rate, inputs, triggers, etc
  - Identifies workstations to use for logging, postprocessing
  - Defines how long to keep the data
  - Defines how to postprocess the data.
- Script is run periodically to ensure that all loggers are active
- About 36k PVs are time-series logged
- Intervals from 0.25s to 2 minutes

### OAG Data Logging System

- Most loggers use sddslogger
  - Multiple input and output file pairs
    - Economize TCP connections
    - Reduce multiple connections to a PV
  - Jobs run forever, creating a new file for each day
  - Supports conditional logging
  - Honors "inhibit PV" that prevents logging and restarts during emergencies (e.g., power outage recovery)
  - Supports use of "data strobe PVs" for quasi-synchronous logging across many loggers and workstations
- Data reviewed through a Tcl/Tk interface or Web



### OAG Data Logging: Unique Features

- OAG data logging tools offer more than simple time-series or monitor-based logging
  - Conditional logging
  - Glitch logging
  - Statistics logging
  - Synchronized logging of fast data
  - Alarm logging with related data
- Loggers are SDDS-configured
  - Generate configurations with scripts
  - Process configurations like any other SDDS data
- Custom post-processing and display is easy to develop with SDDS tools

#### Conclusion

- OAG has a powerful set of EPICS tools based on
  - Tcl/Tk scripting language
  - SDDS file protocol and program toolkits
- This software is used to
  - Automate APS accelerator operations
  - Automate accelerator physics measurements
  - Perform data logging, analysis, and display
  - Perform feedback, feedforward, and optimization
  - Pre- and post-process simulation data
- Software is generic and configurable to diverse applications